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Welcome!
Toni Robres

Domain Tech Lead SCRM
Passionate about Quality and software Development
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What you will learn today
✘ Introduction 
✘ SOLID principles
✘ Design Patters
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Coupling and cohesion
✘ Resolving complex problems à Modularization
✘ The way we structure the modules and how 

they are interacting to each other give rise to:
✘ Coupling
✘ Cohesion
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Low coupling and high cohesion advantages

✘ Improve maintainability

✘ Improve code reusing

✘ Improve readability 

✘ Facilitate unit and integration tests

Coupling and cohesion

8



9



Want big impact? Use big image.
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Any module should only be responsable for 
one (and only one) function
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Single Responsability



Idea

v Any class should have only 
one reason to change

v All services should be closely 
aligned with his 
responsability

Single responsability
Benefits

v High cohesion

v Allows class composition

v Avoid duplicities
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Any entity should be open to extend and 
close to modify
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Open / Close



Idea

v A new feature not should 
cause a modification

v Can be aplicable to classes, 
services or use cases

v Avoid relying on specific 
implementations

Open / CLOSE
Benefits

v Facilitate adaptation to new 
changes

v Avoid errors when the 
behaviour is modified
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High level modules should not depend on 
low level modules 
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Dependency inversion



Idea

v High level modules should not 
depend on low level modules. 
Both should depend on 
abstractions

v The abstractions should not 
depend on detail specifications. 
The details should depend on 
abstractions

Dependency inversion
Benefits

v Facilitate implementation 
modifications

v It’s easy to substitute 
implementations

v Improve the class testability

v Visualize all dependencies
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Want big impact? Use big image.
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What are?

✘ General reusable solution 
that can be applicable to 
different problems

✘ Templates to deal a general 
problems

✘ Focus on specific purposes

✘ Avoid reinventing the wheel

Design Patterns
What are not?

v Are not copy paste

v Not aplicable to all the 
problems

v Not a silver bullet
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Building complex objects step by step
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Builder pattern



Idea

v Make it simple the complex 
object building in simple 
steps

v Create different 
representations of complex 
objects

Builder pattern
Advantages

v Provide control over the 
steps of the object building 
process

v Allow to vary an object 
internal representation. 

v Increase readability in the 
builiding process
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Only single instance of a class
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Singleton pattern



Idea

v Ensure that only one 
instance exists

v Provide unique Access point 
to the instance

v WARNING: be carefull 
multithreading

Singleton pattern
Advantatges

✘ Unique access to a specific 
class

✘ Avoid global variables

✘ Global access 

✘ Lazy Initialization
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Extends the object behaviour
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Decorator pattern



Idea

v Add new behaviours to an 
individual object

v The behaviour is extended 
with wrappers with new 
functionalities

Decorator pattern
Advantatges

✘ Extend the class behaviour 
without create new objects

✘ Modify the responsabilities 
during runtime

✘ Is possible combine several 
decorators using different 
decorators
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Create objects without having to specify 
their exact class

26

Factory pattern



Idea

v A factory class Will be the 
responsable to créate 
different objects

Factory pattern
Advantatges

✘ Allow create objects without 
tightly coupling to specific 
classes

✘ Allow extends new module 
types without modify the 
remaining modules
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Summary
✘ Reduce coupling and increase 

cohesion

✘ SOLID as values

✘ Desing patterns to improve the 
test architecture
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Thanks!
Twitter: @twiindan

Email: twiindan@gmail.com
Linkedin: www.linkedin.com/in/antoniorobres/

Github: https://github.com/twiindan/SOLID_patterns
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