


Building for excellence:
Test Design Patterns for sustainable 

automation framework



Welcome!
Toni Robres

Domain Tech Lead SCRM
Passionate about Quality and software Development

3



4



What you will learn today
✘ Introduction 
✘ SOLID principles
✘ Design Patters

5



Coupling and cohesion
✘ Resolving complex problems à Modularization
✘ The way we structure the modules and how 

they are interacting to each other give rise to:
✘ Coupling
✘ Cohesion

6



7



Low coupling and high cohesion advantages

✘ Improve maintainability

✘ Improve code reusing

✘ Improve readability 

✘ Facilitate unit and integration tests

Coupling and cohesion

8



9



Want big impact? Use big image.

10



Any module should only be responsable for 
one (and only one) function

11

Single Responsability



Idea

v Any class should have only 
one reason to change

v All services should be closely 
aligned with his 
responsability

Single responsability
Benefits

v High cohesion

v Allows class composition

v Avoid duplicities

12



Any entity should be open to extend and 
close to modify

13

Open / Close



Idea

v A new feature not should 
cause a modification

v Can be aplicable to classes, 
services or use cases

v Avoid relying on specific 
implementations

Open / CLOSE
Benefits

v Facilitate adaptation to new 
changes

v Avoid errors when the 
behaviour is modified

14



High level modules should not depend on 
low level modules 

15

Dependency inversion



Idea

v High level modules should not 
depend on low level modules. 
Both should depend on 
abstractions

v The abstractions should not 
depend on detail specifications. 
The details should depend on 
abstractions

Dependency inversion
Benefits

v Facilitate implementation 
modifications

v It’s easy to substitute 
implementations

v Improve the class testability

v Visualize all dependencies

16



17



Want big impact? Use big image.

18



What are?

✘ General reusable solution 
that can be applicable to 
different problems

✘ Templates to deal a general 
problems

✘ Focus on specific purposes

✘ Avoid reinventing the wheel

Design Patterns
What are not?

v Are not copy paste

v Not aplicable to all the 
problems

v Not a silver bullet

19



Building complex objects step by step

20

Builder pattern



Idea

v Make it simple the complex 
object building in simple 
steps

v Create different 
representations of complex 
objects

Builder pattern
Advantages

v Provide control over the 
steps of the object building 
process

v Allow to vary an object 
internal representation. 

v Increase readability in the 
builiding process

21



Only single instance of a class

22

Singleton pattern



Idea

v Ensure that only one 
instance exists

v Provide unique Access point 
to the instance

v WARNING: be carefull 
multithreading

Singleton pattern
Advantatges

✘ Unique access to a specific 
class

✘ Avoid global variables

✘ Global access 

✘ Lazy Initialization

23



Extends the object behaviour

24

Decorator pattern



Idea

v Add new behaviours to an 
individual object

v The behaviour is extended 
with wrappers with new 
functionalities

Decorator pattern
Advantatges

✘ Extend the class behaviour 
without create new objects

✘ Modify the responsabilities 
during runtime

✘ Is possible combine several 
decorators using different 
decorators

25



Create objects without having to specify 
their exact class

26

Factory pattern



Idea

v A factory class Will be the 
responsable to créate 
different objects

Factory pattern
Advantatges

✘ Allow create objects without 
tightly coupling to specific 
classes

✘ Allow extends new module 
types without modify the 
remaining modules

27



28



Summary
✘ Reduce coupling and increase 

cohesion

✘ SOLID as values

✘ Desing patterns to improve the 
test architecture

29



30

Thanks!
Twitter: @twiindan

Email: twiindan@gmail.com
Linkedin: www.linkedin.com/in/antoniorobres/

Github: https://github.com/twiindan/SOLID_patterns

mailto:twiindan@gmail.com
http://www.linkedin.com/in/antoniorobres/



